A review: Analytical methods for heavy metals determination in environment and human samples

Vol 2, Issue 03, Pages 97-126,*** Field: analytical Chemistry

  • Mojtaba Arjomandi Department of Water Sciences and Engineering, Science and Research Branch, Islamic Azad University
  • *Hamid Shirkhanloo, Corresponding Author Research Institute of Petroleum Industry, West Entrance Blvd., Olympic Village
Keywords: Heavy metals, Toxicity, Biological and Environmental matrix, Analytical methods, Nanotechnology

Abstract

Heavy metals are vital and necessary in our daily lives. Moreover, if the amounts of heavy metals are more than the acceptable amounts (mentioned by WHO) in soil, water, and air, indeed, they cause a lot of diseases in human bodies. Therefore, monitoring and measuring the amounts of heavy metals that are arduous and difficult are so important. In this review paper, a lot of studies that have been carried out on the determination and quantification of heavy metals in human bodies, soil, and water are considered. Moreover, the effect of toxicity of each heavy metal on human health is assessed. According to WHO, EPA, NIOSH, ACGIH, and clinical chemistry, the determination of heavy metals such as Cd, Pb, Zn, Hg, Cu, Mn is very important in the human body and Environmental matrixes. 

References

M.H. Dehghani, B. Heibati, A. Asadi, I. Tyagi, S. Agarwal, V.K. Gupta, Reduction of noxious Cr(VI) ion to Cr(III) ion in aqueous solutions using H2O2 and UV/H2O2 systems, J. Ind. Eng. Chem., 33 (2016) 197–200.

Cárdenas Valdivia, M. M. López Guerrero, E. I. Vereda Alonso, J. M. Cano Pavón, A. García de Torres, Determination of As, Sb, and Hg in water samples by flow injection coupled HR CS ET-AAS with an in situ hydride generator, Microchem. J., 138 (2018) 109-115.

S. Carballo, J. Terán, R. M. Soto, A. Carlosena, D. Prada, Green approaches to determine metals in lubricating oils by electrothermal atomic absorption spectrometry (ET-AAS), Microchem. J., 108 (2013) 74-80.

M. Felipe-Sotelo, A. Carlosena, J. M. Andrade, M. J. Cal-Prieto, D. Prada, Slurry-based procedures to determine chromium, nickel and vanadium in complex matrices by ET-AAS, Microchem. J., 81 (2005) 217-224.

G. Carrone, E. Morzan, M. Tudino , R. Etcheniqu, Determination of cadmium in commercial tobacco by ET-AAS, J. Anal. At. Spectrom., 33 (2018) 1970-1973.

H. Ashkenani, M. A. Taher, Use of ionic liquid in simultaneous microextraction procedure for determination of gold and silver by ET-AAS, Microchem. J., 103 (2012) 185-190.

I. Mohammadpourfard , N. Shariatifar, G. R. Jahed-Khaniki, E. Ebadi-Fathabad, Determination of Heavy Metals in Apricot and Almond Oils, Iran. J. Health Sci., 3 (2015) 18-24.

A. Prkić, I. Mitar , J. Giljanović, V. Sokol, P. Bošković, I. Dolanc, T. Vukušić, Comparison of Potentiometric and ETAAS Determination of Copper and Iron in Herbal Samples, Int. J. Electrochem. Sci., 13 (2018) 9551 – 9560.

G. M. dos Santos, D. Pozebon, C. Cerveira, D. P. de Moraes, Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS), Microchem. J., 133 (2017) 265-271.

M. Balali-Mood, B. Riahi-Zanjani, A. Mahdizadeh, V. Moradi, R. FazeliBakhtiyari, Arsenic and lead contaminations in commercial fruit juices of markets in mashhad, Iran, Iran. J. Toxicol., 12 (2018) 15-20.

S. Deniz, A. Kasa, S. Sel, Ç. Büyükpınar. S. Bakırdere, Sensitive and Accurate Determination of Cobalt at Trace Levels by Slotted Quartz Tube-Flame Atomic Absorption Spectrometry Following Preconcentration with Dispersive Liquid–Liquid Microextraction, Anal. Lett., 52 (2019) 745-753

P. Pohl, M. Kalinka, M. Pieprz, Development of a very simple and fast analytical methodology for FAAS/FAES measurements of Ca, K, Mg and Na in red beetroot juices along with chemical fractionation of Ca and Mg by solid phase extraction, Microchem. J., 147 (2019) 538-544.

T. Daşbaşi, H. Muğlu, C. Soykan. A. Ülgen, Using a new synthesized polymer resin in various water and dried vegetables amples, J. Macromolecul. Sci., Part A, 55 (2018) 288-295

E. Rossi, M. I. Errea, M. M. F. de Cortalezzi, J. Stripeikis, Selective determination of Cr (VI) by on-line solid phase extraction FI-SPE-FAAS using an ion exchanger resin as sorbent: An improvement treatment of the analytical signal, Microchem. J., 130 (2017) 88-92.

P. Pohl, A. Dzimitrowicz, P. Jamroz, K. Greda, HR-CS FAAS based method for direct determination of total concentrations of Ca, Fe, Mg and Mn in functional apple beverages and evaluation of contributions of the bioaccessible fraction of these elements by in vitro gastrointestinal digestion and chemical fractionation, Microchem. J., 140 (2018) 248-255.

N. Bader, H. Hasan, A. EL-Denali, Determination of Cu, Co, and Pb in selected frozen fish tissues collected from Benghazi markets in Libya, Chem. Methodol., 2 (2018) 56-63

A. Turek, K. Wieczorek, W.M. Wolf, Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem, Sustainability, 11 (2019) 1753.

L. A. Meira, F. S. Dias, Application of constrained mixture design and Doehlert matrix in the optimization of dispersive liquid-liquid microextraction assisted by ultrasound for preconcentration and determination of cadmium in sediment and water samples by FAAS, Microchem. J., 130 (2017) 56-63.

E. Mohammed, T. Mohammed, A. Mohammed, Optimization of instrument conditions for the analysis for mercury, arsenic, antimony and selenium by atomic absorption spectroscopy, Method. X, 5 (2018) 824–833.

X. Yu, C.Liu, Y. Guo , T. Deng, Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques, Molecul., 24 (2019) 926.

O. Syta, L. Kępa, A. Mistewicz, C. Wesołowska, B. Wagner, In situ study of Limoges painted enamels by portable X-ray fluorescence supported by laser ablation inductively coupled plasma mass spectrometry analysis of micro-samples, Microchem. J., 137 (2018) 37-44.

P. R. Aranda, S. Moyano, L. D. Martinez, I. E. De Vito, Determination of trace chromium(VI) in drinking water using X-ray fluorescence spectrometry after solid-phase extraction, Anal. Bioanal. Chem., 398 (2010)1043–104

P. Chauhan, R. P. Chauhan, M. Gupta, Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques, Microchem. J., 106 (2013) 73-78.

L. M. Smieska, J. Twilley, A. R. Woll, M. Schafer, A. M. DeGalan, Energy-optimized synchrotron XRF mapping of an obscured painting beneath Exit from the Theater, attributed to Honoré Daumier, Microchem. J., 146 (2019) 679-691.

J. Barek, A. Berka, V. Borek, The use of redox reactions in the analysis of dyes and dye intermediates: XIV. Direct current polarography of 4,4′-disubstituted azobenzenes in acetonitrile, Microchem. J., 30 (1984) 404-417.

[26] O. Meena, A. Garg, Y. Kumar, R. Pandey, Electro analytical Procedure for determination of Heavy Metals in Brassica oleraceae ver. Botrytis, Int. J. Chem. Tech. Res. 3 (2011)1596-1603

J. C. García-Mesa, P. Montoro Leal, M. M López Guerrero, E. I. Vereda Alonso, Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP-OES based on a new functionalized magnetic graphene oxide, Microchem. J., 150 (2019) 104-141.

Y. Yamini, M. Safari, Modified magnetic nanoparticles with catechol as a selective sorbent for magnetic solid phase extraction of ultra-trace amounts of heavy metals in water and fruit samples followed by flow injection ICP-OES, Microchem. J., 145 (2018) 503-511.

J. Pérez-Arantegui, M. Resano, E. García-Ruiz, F. Vanhaecke, J. Coll, Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry, Talanta, 74 (2008) 1271-1280.

P. Krystek, P. Favaro, P. Bode, R. Ritsema, Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: A first orientation, Talanta, 97 (2012) 83-86.

B. N. Kumar, S. Kanchi, M.I. Sabela, K. Bisetty, N.V.V. Jyothi, Spectrophotometric determination of nickel (II) in waters and soils: Novel chelating agents and their biological applications supported by DFT method (UV-VIS), Karbala Int. J. Modern Sci., 2 (2016) 239-250

W. Maher, M. Ellwood, S. Foster, G. Raber, Overview of hyphenated techniques using an ICP-MS detector with an emphasis on extraction techniques for measurement of metalloids by HPLC–ICPMS, Microchem. J., 105 (2012) 15-31.

V. Majidi, Capillary electrophoresis inductively coupled plasma mass spectrometry, Microchem. J., 66 (2000) 3-16.

Z. Stojanović, Z. Koudelkova, E. Sedlackova, D. Hynek, L. Richtera , V. Adam, Determination of chromium(VI) by anodic stripping voltammetry using a silver-plated glassy carbon electrode, Anal. Method., 10 (2018) 2917-2923.

N. Mouhamed, K. Cheikhou, G. Elhadji Momar Rokhy, D. M. Bagha, M. D. C. Guèye, T. Tzedakis, Determination of lead in water by linear sweep anodic stripping voltammetry (LSASV) at unmodified carbon paste electrode: Optimization of operating parameters, Am. J. Anal. Chem., 9 (2018) 171-186.

M. Alrobaian, H. Arida, Assessment of Heavy and Toxic Metals in the Blood and Hair of Saudi Arabia Smokers Using Modern Analytical Techniques, Inter. J. Anal. Chem., 8 (2019) 1-8.

A. J. Zimmerman, C. D. Weindorf, Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures, Inter. J. Anal. Chem., 9 (2010) 1-7.

A. S. Zahidqureshi, N. Mahboob, N. Khuram, Determination of Heavy Metal Toxicity in Blood and Health Effect by AAS (Detection of Heavy Metals and its Toxicity in Human Blood) Madiha Batool, Arch. Nano. Op. Acc. J., 1 (2018) 22-28.

Y. Fu, Adsorption of Heavy Metal Sewage on Nano-materials such as Titanate/TiO2Added Lignin, Results in Physics, 7 (2018) 5-17.

Y. Zhang, W. Bing, X. Hui, L. Hui, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, Nanoimpact., 3 (2016) 22–39.

M. Tuzen, M. Soylak, Multiwalled carbon nanotubes for speciation of chromium in environmental samples, J. Hazard. Mater., 147 (2007) 219–225.

M. Zendehdel, B. Shoshtari-Yeganeh, G. Cruciani, Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization, J. Iran. Chem. Soc., 13 (2016) 1915–1930.

Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, J. Ma, Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater, Chem. Eng. J., 175 (2011) 1-7.

I. Ojea-Jiménez, X. López, J. Arbiol, V. Puntes, Citrate-coated gold nanoparticles as smart scavengers for mercury (II) removal from polluted waters, ACS Nano, 6 (2012) 2253-2259.

D. S. K. Peker, O. Turkoglu, M. Soylak, Dysprosium (III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters, J. Hazard. Mater., 143 (2007) 555-560.

M. Hiraide, T. Ito, M. Baba, H. Kawaguchi, A. Mizuike, Multielement preconcentration of trace heavy metals in water by coprecipitation and flotation with indium hydroxide for inductively coupled plasma-atomic emission spectrometry, Anal. Chem., 52 (1980) 804-807.

M. Soylak, Column preconcentration/separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite XAD-1180, Turkish J. Chem., 7 (2003) 235-42.

M. A. Akl, I. M. Kenawy, R. R. Lasheen, Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems, Microchem. J., 78 (2004) 143-56.

M. A. A. Akl, I. M. M. Kenawy, R. R. Lasheen, Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems, Microchem. J., 78 (2004) 143-156.

M. Tuzen, M. Soylak, Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations, J. Hazard. Mater., 162 (2009) 724-729.

M. Soylak, N. D. Erdogan, Copper (II)–rubeanic acid coprecipitation system for separation–preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations, J. hazard. Mater., 137 (2016) 1035-1041.

G. Li, Z. Zhao, J. Liu, G. Jiang, Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica, J. Hazard. Mater., 192 (2011) 277-283.

G. Li, K.H. Row, Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction, TrAC Trends in Anal. Chem., 7 (2019) 115651.

M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, J. Environ. Manag., 92 (2011) 2355-2388.

H. Kim, K. Baek, J. Lee, J. Iqbal, J. W. Yang, Comparison of separation methods of heavy metal from surfactant micellar solutions for the recovery of surfactant, Desalination, 191 (2006) 186-192.

Y. Sang, F. Li, Q. Gu, C. Liang, J. Chen, Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane, Desalination, 223 (2008) 349-360.

P. A. Kobielska, A. J. Howarth, O. K. Farha, S. Nayak, Metal–organic frameworks for heavy metal removal from water, Coordination Chem. Reviews, 358 (2018) 92-107.

E. Alonso, A. Santos, M. Callejón, J. C. Jiménez, Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin, Chemosphere, 56 (2004) 561-570.

S. Obiri, Determination of heavy metals in water from boreholes in Dumasi in the Wassa West District of western region of Republic of Ghana, Environ. Monitor. Assess., 130 (2007) 455-463.

C. Riccardi, P. Di Filippo, D. Pomata, F. Incoronato, M. Di Basilio, M. P. Papini, S. Spicaglia, Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farms, Sci. Total Environ., 393 (2008) 50-63.

M. A. Momodu, C. A. Anyakora, Heavy metal contamination of ground water: The Surulere case study, Res. J. Environ. Earth Sci., 2 (2010) 39-43.

A. Rudnitskaya, A. Ehlert, A. Legin, Y. Vlasov, S. Büttgenbach, S. Multisensor, System on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater, Talanta, 55 (2001) 425-431.

P. Kurup, C. Sullivan, R. Hannagan, S. Yu, H. Azimi, S. Robertson, D. Ryan, R. Nagarajan, T. Ponrathnam, G. Howe, A review of technologies for characterization of heavy metal contaminants, Indian Geotech. J., 47 (2017) 421-436.

K.S. Yun, J. Gil, J. Kim, H.J. Kim, K.H. Kim, D. Park, J.Y. Kwak, H. Shin, K. Lee, J. Kwak, E.Yoon, A miniaturized low-power wireless remote environmental monitoring system using microfabricated electrochemical sensing electrodes, 12th international conference on solid-state sensors, actuators and microsystems, Cat. No. 03TH8664, IEEE, 2003.

B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosen. Bioelectron., 94 (2017) 443-455.

N. M. Isa, A. Z. Aris, W. Y. Lim, W. N. A. W. Sulaiman, S. M. Praveena, Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia, Arab. J. Geosci., 7 (2014) 1087-1100.

M. Afzal, G. Shabir, S. Iqbal, T. Mustafa, Q. M. Khan, Z. M.Khalid, Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan, CLEAN–Soil Air Water, 42 (2014) 1133-1139.

A. Joshi, T. C. Nagaiah, Nitrogen-doped carbon nanotubes for sensitive and selective determination of heavy metals, RSC Adv., 5 (2015) 105119-105127.

H. X. Zhao, W. Cai, D. Ha, H. Wan, P. Wang, The study on novel microelectrode array chips for the detection of heavy metals in water pollution, J. Innovative Optic. Health Sci., 5 (2012), 1150002.

C.S. Chapman, C.M. Van Den Berg, University of Liverpool, Electrochemical cell. U.S. Patent 8,277,618, 2012.

J. Holmes, P. Pathirathna, P. Hashemi, Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements, TrAC Trends in Anal. Chem., 5 (2018) 5-11.

M. Liu, G. Zhao, Y. Tang, Z. Yu, Y. Lei, M. Li, Y. Zhang, D. Li, A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays, Environ. Sci. Tech., 44 (2010) 4241-4246.

M. Gutiérrez-Capitán, A. Baldi, C. Jimenez-Jorquera, C. Fernández-Sánchez, R. Gomez, V. García, Stripping voltammetric detection of trace heavy metals using gold ultramicroelectrode arrays, IEEE, 9th IberoAmerican congress on sensors, 1-4, 2014.

W. G. Yelton, M. P. Siegal, National Technology and Engineering Solutions of Sandia LLC, Nanoelectrode array for electrochemical analysis, U.S. Patent 7 (2009) 469.

A. Sarı, M. Tuzen, D. Cıtak, M. Soylak, Adsorption characteristics of Cu (II) and Pb (II) onto expanded perlite from aqueous solution, J. Hazard. Mater., 148 (2007) 387-394.

A. Sarı, M. Tuzen, Ö. D. Uluözlü, M. Soylak, Biosorption of Pb (II) and Ni (II) from aqueous solution by lichen (Cladonia furcata) biomass, Biochem. Eng. J., 37 (2007) 151-158.

O. D. Uluozlu, M. Tuzen, D. Mendil, M. Soylak, Trace metal content in nine species of fish from the Black and Aegean Seas, Turkey, Food chemistry, 104 (2007) 835-840.

A. Sarı, M. Tuzen, M. Soylak, Adsorption of Pb (II) and Cr (III) from aqueous solution on Celtek clay, J. Hazard. Mater., 144 (2007) 41-46.

M. Tuzen, K. O. Saygi, Usta C., Soylak M., Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions, Biores. Tech., 99 (2008) 1563-1570.

İ. Narin, M. Soylak, L. Elçi, M. Doğan, Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column, Talanta, 52 (2000) 1041-1046.

M. Tuzen, M. Soylak, L. Elci, Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108, Analytica Chimica Acta, 548 (2005)101-108.

U. Divrikli, N. Horzum, M. Soylak, L. Elci, Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey, Int. J. food Sci. Tech., 41 (2006) 712-716.

C. Duran, A. Gundogdu, V. N. Bulut, M. Soylak, L. Elci, H. B. Sentürk, M. Tüfekci, Solid-phase extraction of Mn (II), Co (II), Ni (II), Cu (II), Cd (II) and Pb (II) ions from environmental samples by flame atomic absorption spectrometry (FAAS), J. Hazard. Mater., 146 (2007) 347-355.

A. Sari, D. Mendil, M. Tuzen, M. Soylak, Biosorption of palladium (II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 162 (2009) 874-879.

D. Mendil, Ö. F. Ünal, M. Tüzen, M. Soylak, Determination of trace metals in different fish species and sediments from the River Yeşilırmak in Tokat, Turkey, Food Chem. Toxicol., 48 (2010) 1383-1392.

A. Gundogdu, D. Ozdes, C. Duran, V. N. Bulut, M. Soylak, H. B. Senturk, Biosorption of Pb (II) ions from aqueous solution by pine bark (Pinus brutia Ten.), Chem. Eng. J., 153 (2009) 62-69.

F. A. Aydin, M. Soylak, A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples, Talanta, 73 (2007) 134-141.

M. Tuzen, I. Karaman, D. Citak, M. Soylak, Mercury (II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination, Food Chem. Toxicol., 47 (2009) 1648-1652.

M. Tuzen, D. Çıtak, D. Mendil, M. Soylak, Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination, Talanta, 78 (2009) 52-56.

M. Tuzen, K. O. Saygi, M. Soylak, Novel solid phase extraction procedure for gold (III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination, J. Hazard. Mater., 156 (2008) 591-595.

M. Tuzen, A. Sarı, D. Mendil, O. D. Uluozlu, M. Soylak, M. Dogan, Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum, J. Hazard. Mater., 165 (2009) 566-572.

M. Soylak, O. Ercan, Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes, J. Hazard. Mater., 168 (2009) 1527-1531.

S. Saracoglu, M. Soylak, L. Elci, Separation/preconcentration of trace heavy metals in urine, sediment and dialysis concentrates by coprecipitation with samarium hydroxide for atomic absorption spectrometry, Talanta, 59 (2003) 287-293.

T. W. Speir, A. P. Van Schaik, H. J. Percival, M. E. Close, L. Pang, Heavy metals in soil, plants, and groundwater following high-rate sewage sludge application to land, J. Water, Air, Soil Poll., 150 (2003) 319-358.

P. J. H. Scheeren, R. O. Koch, C. J. N. Buisman, L. J. Barnes, J. H. Versteegh, New biological treatment plant for heavy metal contaminated groundwater, In EMC’91:Non-merrous metallurgy, Springer, 9 (2007) 403-416.

H. Malassa, F. Al-Rimawi, M. Al-Khatib, M. Al-Qutob, Determination of trace heavy metals in harvested rainwater used for drinking in Hebron (south West Bank, Palestine) by ICP-MS, Environ. Monitor. Assess., 186 (2014) 6985-6992.

M. G. Yalcin, I. Narin, M. Soylak, Heavy metal contents of the Karasu creek sediments, Nigde, Turkey, Environ. Monitor. Assess., 128 (2007) 351-357.

O. D. Uluozlu, M. Tuzen, D. Mendil, M. Soylak, Determination of As (III) and As (V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry, Food Chem. Toxicol., 48 (2010) 1393-1398.

D. Mendil, F. Celik, M. Tuzen, M. Soylak, Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey, J. Hazard. Mater., 166 (2009) 1344-1350.

M. Tuzen, M. Soylak, K. Parlar, Cadmium and lead contamination in tap water samples from Tokat, Turkey, Bull. Environ. Conta. Toxicol., 75 (2005) 284-289.

M. Tuzen and M. Soylak, Evaluation of Metal Levels of Drinking Waters from the Tokat-Black Sea Region of Turkey, Polish J. Environ. Studies, 15 (2006) 1-6.

B. Naeemullaha, M. Tuzena, A new portable switchable hydrophilicity microextraction method for determination of vanadium in microsampling micropipette tip syringe system couple with ETAAS, Talanta, 5 (2018) 1-8.

P. G. Jessop, L. Phan, A. Carrier, S. Robinson, C. J. Dürr, J. R. Harjani, A solvent having switchable hydrophilicity, Green Chem., 12 (2010) 809-814.

E. Kazemi, S. Dadfarnia, A. M. Haji Shabani, P. Sadat Hashemi, Synthesis of 2-mercaptobenzothiazole/magnetic nanoparticles modified multi-walled carbon nanotubes for simultaneous solid-phase microextraction of cadmium and lead, Int. J. Environ. Anal. Chem., 97 (2017) 743-755.

H. Heidari, A. Moghimi, H. R. Shahbazi, Solid phase extraction of trace cobalt ( II ) in industrial wastewaters by modified nanotube carbon carboxyl and its determination with flame atomic spectroscopy, Int. J. Bio-Inorg., 7 (2018) 43–57.

Feist B., Selective dispersive micro solid-phase extraction using oxidized multiwalled carbon nanotubes modified with 1,10-phenanthroline for preconcentration of lead ions, Food Chem., 209 (2016) 37–42.

E. Zolfonoun, Solid phase extraction and determination of indium using multi-walled carbon nanotubes modified with magnetic nanoparticles, Anal. Meth. Environ. Chem. J., 1 (2018) 5-10.

H. Shirkhanloo, A. Khaligh, H. Z. Mousavi, A. Rashidi, Ultrasound assisted-dispersive-ionic liquid-micro-solid phase extraction based on carboxyl-functionalized nanoporous graphene for speciation and determination of trace inorganic and organic mercury species in water and caprine blood samples, Microchem. J., 130 (2017) 245-254.

H. Shirkhanloo, M. Ghazaghi, A. Rashidi, A. Vahid, Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction, Microchem. J., 130 (2017) 137–146.

M. Tuzen, A new robust, deep eutectic-based floating organic droplets microextraction method for determination of lead in a portable syringe system directly couple with FAAS, Talanta, 196 (2019) 71-77.

R. A. Zounr, M. Tuzen, N. Deligonul, M.Y. Khuhawar, A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry, Food Chem., 253 (2018) 277-283.

M. Tuzen, O.D. Uluozlu, D. Mendil, M. Soylak, L.O.R. Machado, W.N.L. DosSantos, S.L.C. Ferreira, A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS, Food Chem., 254 (2018) 380-384.

S. Moyano, G. Polla, P. Smichowski, J.A. Gásquez, L.D. Martinez, On-line preconcentration and determination of vanadium in tap and river water samples by flow injection-inductively coupled plasma-optical emission spectrometry (FI-ICP-OES), J. Anal. At. Spectrom., 21 (2006) 422-426.

T. Stefanova-Bahchevanska, N. Milcheva, S. Zaruba, V. Andruch, V. Delchev, K. Simitchiev, Gavazov K. A., green cloud-point extraction-chromogenic system for vanadium determination, J. Mol. Liq., 248 (2017) 135-142.

I. López-García, J.M.H. Juan, H.C. Manuel, Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide, Spectrochim. Acta Part B, 143 (2018) 42-47.

S. Khan, T.G. Kazi, J.A. Baig, N.F. Kolachi, H.I. Afridi, S.K. Wadhwa, F. Shah, Cloudpoint extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant, J. Hazard. Mater., 182 (2010) 371-376.

T. Asadollahi, S. Dadfarnia, A. M. H. Shabani, Separation/preconcentration and determination of vanadium with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry, Talanta, 82 (2010) 208-212.

L. Chen, H. Xin, Y. Fang, Application of metal oxide heterostructures in arsenic removal from contaminated water, J. Nanomater., 2 (2014) 1–10.

M.K. Ghosh, G.E.J. Poinern, T.B. Issa, ‘Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method’, Korean J. Chem. Eng., 29 (2012) 95–102.

L. Feng, M. Cao, X. Ma, Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal, J. Hazard. Mater., 217 (2012) 439–446.

W. Tang, Y. Su, Q. Li, Mg-doping: a facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to alpha-Fe2O3 nanoadsorbents, J. Mater. Chem. A, 1 (2013) 830–836.

D. Nabi, I. Aslam, I. A. Qazie, Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal, J. Environ. Sci., 21 (2009) 402–408.

M. I. Danish, I. A. Qazi, A. Zeb, Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: adsorption and column studies, J. Nanomater., 69 (2013) 1–17.

C.A. Martinson, K.J. Reddy, ‘Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles’, J. Colloid Interf. Sci., 336 (2009) 406– 411.

R. Li, Q. Li, S. Gao, Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part A. Adsorption capacity and mechanism, Chem. Eng. J., 185 (2012) 127–135.

Y. Liu, Q. Li, S. Gao, Exceptional As(III) sorption capacity by highly porous magnesium oxide nanoflakes made from hydrothermal synthesis, J. Am. Ceram. Soc., 94 (2011) 217–223.

A. Goswami, P. K. Raul, M. K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90 (2012) 1387–1396.

H. Cui, Q. Li, S. Gao, Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles’, J. Ind. Eng. Chem., 18 (2012) 1418–1427.

S. A. Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotubezirconia nanohybrid for potential drinking water purification, J. Colloid Interf. Sci., 375 (2012) 154–159.

R. Chen, C. Zhi, H. Yang, Arsenic(V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes’, J. Colloid Interf. Sci., 359 (2011) 261–268.

W. Yang, P. Ding, L. Zhou, Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution, Appl. Surf. Sci., 23 (2013) 38–45.

Y. M. Hao, C. Man, Z. B. Hu, Effective removal of Cu2+ ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2014) 392–399.

Y. T. Zhou, H. L. Nie, C. B. White, Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with αketoglutaric acid, J. Colloid Interf. Sci., 330 (2009) 29–37.

M. A. Salam, M. S. I. Makki, M. Y. A. Abdelaal, Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution’, J. Alloy. Compd., 509 (2009) 2582–2587.

O. Hakami, Y. Zhang, Banks C. J., Thiol-functionalised mesoporous silicacoated magnetite nanoparticles for high efficiency removal and recovery of Hg from water, Water Res., 46 (2012) 3913–3922.

A. Farrukh, A. Akram, A. Ghaffar, Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation, ACS Appl. Mater. Interf., 5 (2013) 3784–3793.

B. Tawabini, S. Al-Khaldi, M. Atieh, Removal of mercury from water by multi-walled carbon nanotubes, Water Sci. Technol., 61 (2010) 591–598.

F. A. Al-Khaldi, B. Abu-Sharkh, A. M. Abulkibash, Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study, Desalination Water Treat., 53 (2015) 1417–1429.

F. P. Fato, D. W. Li, L. Zhao, K. Qiu, Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles, ACS Omega, 44 (2019) 7543-7549.

G. Gollavelli, C. C. Chang, Y. C. Ling, Facile Synthesis of Smart Magnetic Graphene for Safe Drinking Water: Heavy Metal Removal and Disinfection Control, ACS Sustainable Chem. Eng., 1 (2013) 462−472.

X. Luo, J. Zeng, S. Liu, L. Zhang, An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres, Bioresour. Technol., 8 (2015) 135-142.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug. Delivery Rev., 63 (2011) 24−46.

N. Neyaz, W. Siddiqui, K. Nair, Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: A review, Int. J. Environ. Sci., 4 (2013) 472−483.

F. H. Chen, Q. Gao, J. Z. Ni, The grafting and release behavior of doxorubincin from Fe3O4 at SiO2 core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery, Nanotechnol., 19 (2008) 165103.

X. Luo, X. Lei, N. Cai, X. Xie, Y. Xue, F. Yu, Removal of Heavy Metal Ions from Water by Magnetic Cellulose-Based Beads with Embedded Chemically Modified Magnetite Nanoparticles and Activated Carbon, ACS Sustainable Chem. Eng., 47 (2016) 3960-3969.

M. A. Shannon, Science and technology for water purification in the coming decades, Nanosci. Technol., 452 (2008) 301−310.

X. Luo, L. Zhang, Immobilization of Penicillin G Acylase in Epoxy-Activated Magnetic Cellulose Microspheres for Improvement of Biocatalytic Stability and Activities. Biomacromolecules, 11 (2010) 2896−2903.

M. Gericke, J. Trygg, P. Fardim, Functional Cellulose Beads: Preparation, Characterization, and Applications, Chem. Rev., 113 (2013) 4812−4836.

H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J., 219 (2013) 209−216.

Y. Zhao, H. Chen, J. Li, C. Chen, Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal, J. Colloid Interface Sci., 450 (2015) 189−195.

C. Santhosh, R. Nivetha, P. Kollu, V. Srivastava, M. Sillanpää, A. Nirmala Grace, A. Bhatnagar, Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles, Sci. Rep., 7 (2017) 14100-14107.

S. Singh, K. C. Barick, D. Bahadur, Functional Oxide Nanomaterials and Nanocomposites for the Removal of Heavy Metals and Dyes Invited Review Article, Nanomater. nanotechnol., 3 (2013) 1-18.

P. Z. Ray, H. J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review, RSC Adv., 5 (2015) 29885–29907.

G. Vilardi, T. Mpouras, D. Dermatas, N. Verdone, A. Polydera, L. Di, Palma Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling, Chemosphere, 201 (2018) 716-729.

M. Alrobaian and H. Arida, Assessment of Heavy and Toxic Metals in the Blood and Hair of Saudi Arabia Smokers Using Modern Analytical Techniques, Int. J. Anal. Chem.,14 (2019) 1-8.

K. Liu, H. Qi, R. Dong, R. Shivhare, M. Addicoat, T. Zhang, H. Sahabudeen, T. Heine, S. Mannsfeld, U. Aiser, Z. Zheng, X. Feng, On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers, Nature Chem., 11 (2019) 994–1000

M. Rosillo-Lopez, C. G. Salzmann, Highly efficient heavy-metal extraction from water with carboxylated graphene nanoflakes, RSC Adv., 8 (2018) 11043-11050.

J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, L. Ding, Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil, J. Anal. At. Spectrom., 30 (2015) 1920-1926

A. P. Esser-Kahn, A. T. Iavarone, Matthew B. Francis, Metallothionein-Cross-Linked Hydrogels for the Selective Removal of Heavy Metals from Water, J. American Chem. Society, 130 (2008) 15820–15822.

H. Shirkhanloo, A. Khaligh, H. Zavvar Mousavi, A. Rashidi, Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples, Microchem. J., 124 (2016) 637–645.

H. Shirkhanloo, A. Khaligh, H. Zavvar Mousavi, A. Rashidi, Ultrasound assisted-dispersive-ionic liquid-micro-solid phase extraction based on carboxyl-functionalized nanoporous graphene for speciation and determination of trace inorganic and organic mercury species in water and caprine blood samples, Microchem. J., 130 (2017) 245–254

H. Shirkhanloo, M. Ghazaghi, A. Rashidi, A. Vahid, Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction, Microchem. J., 130 (2017) 137–146.

H. Shirkhanloo, M. Ghazaghi, H. Z. Mousavi, Chromium speciation in human blood samples based on acetylcysteine by dispersive liquid–liquid bio microextraction and in-vitro evaluation of acetyl cysteine/cysteine for decreasing of hexavalent chromium concentration, J. Pharmac. Biomed. Anal., 118 (2016) 1–8.

H. Shirkhanloo, A. Khaligh, F. Golbabaei, Z. Sadeghi, A. Vahid, A. Rashidi, On-line micro column preconcentration system based on amino bimodal mesoporous silica nanoparticles as a novel adsorbent for removal and speciation of chromium (III, VI) in environmental samples, J. Environ. Health Sci. Eng., 13 (2015) 13-47.

C. S. A. Felix, D. L. F. da Silva, A. V. B. Chagas, A green on-line digestion system using 70% hydrogen peroxide and UV radiation for the determination of chromium in beer employing ETAAS, Microchem. J., 146 (2019) 1204-1208.

E. G. Barrera, D. Bazanella, P. W. Castro, W. Boschetti, M. B. Dessuy, Alternative method for chromium determination in pharmaceutical drugs by HR-CS GF AAS and direct analysis of solid samples, Microchem. J., 132 (2017) 365-370.

L. Boutorabi, M. Rajabi, M. Barzegar, A. Asghari, Selective determination of chromium(VI) ions using in-tube electro-membrane extraction followed by flame atomic absorption spectrometry, Microchem. J., 132 (2017) 378-384.

M. Shirani, F. Salari, S. Habibollahi, A. Akbari, Needle hub in-syringe solid phase extraction based a novel functionalized biopolyamide for simultaneous green separation/preconcentration and determination of cobalt, nickel, and chromium (III) in food and environmental samples with micro sampling flame atomic absorption spectrometry, Microchem. J., 132 (2019) 104332-104340.

M. Felipe-Sotelo, A. Carlosena, J. M. Andrade, M. J. Cal-Prieto, D. Prada, Slurry-based procedures to determine chromium, nickel and vanadium in complex matrices by ETAAS, Microchem. J., 81 (2005) 217-224.

R. Pechancová, T. Pluháček, J. Gallo, D. Milde, Study of chromium species release from metal implants in blood and joint effusion: Utilization of HPLC-ICP-MS, Talanta, 185 (2018) 370-377.

E. Jorge, M. M. Rocha, I. T. E. Fonseca, M. M. M. Neto, Studies on the strippingvoltammetric determination and speciation of chromium at a rotating-discbismuth film electrode, Talanta, 81 (2010) 556–564.

D. Verma, S. K. Verma, M. K. Deb, Single-drop micro-extraction and diffusereflectance Fourier transform infrared spectroscopic determination of chromium in biological fluids, Talanta, 78 (2009) 270–277.

M. Fırat, S. Bakırdere, M. Selin Fındıkoğlu, E. Betül Kafa, E. Yazıcı, M. Yolcu, Ç. Büyükpınar, D. S. Chormey, S. Sel, F. Turak, Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry, Spectrochim. Acta Part B At. Spectrosc., 129 (2017) 37-41.

R. Gürkan, S. Korkmaz, N. Altunay, Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry, Talanta, 155 (2016) 38-46.

N. A. Kasa, S. Sel, D. S. Chormey, S. Bakırdere, Determination of cadmium at trace levels in parsley samples by slotted quartz tube-flame atomic absorption spectrometry after preconcentration with cloud point extraction, Measurement, 147 (2019) 106841.

K. Shrivas, K. Dewangan, A. Ahmed, Surfactant-based dispersive liquid–liquid microextraction for the determination of zinc in environmental water samples using flame atomic absorption spectrometry,

Anal. Meth., 8 (2016) 5519-5525.

S. Deniz, A. Kasa, S. Sel, Ç. Büyükpınar, S. Bakırdere, Sensitive and accurate determination of cobalt at trace levels by slotted quartz tube-flame atomic absorption spectrometry following preconcentration with dispersive liquid–liquid microextraction, Anal. Lett.,17 (2019) 745-753.

E. Yazıcı, M. Fırat, S. Chormey, E. G. Bakırdere, S. Bakırdere, An accurate determination method for cobalt in sage tea and cobalamin: Slotted quartz tube-flame atomic absorption spectrometry after preconcentration with switchable liquid-liquid microextraction using a Schiff base, Food Chem., 302 (2019) 125330-125336.

A.T. Bisgin, Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry, J. AOAC Inter., 102 (2019) 1516-1522.

A. M. Farajzadeh, H. Dastoori, S. M. Sorouraddin, Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of heavy metals from milk samples, Talanta, 193 (2019) 120485.

J. A. Barreto, R Santos de Assis, R. J. Cassella, V. Azevedolemos, A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples, Author links open overlay panel, Talanta, 193 (2019) 23-28.

E. Fernández, L. Vidal, A. C. García, A. Cana, Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid–liquid microextraction, Analytica. Chimica. Acta., 915 (2016) 49-55.

H. Shirkhanloo, M. Ghazaghi, M. M. Eskandari, Cloud point assisted dispersive ionic liquid -liquid microextraction for chromium speciation in human blood samples based on isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl] ethane thioate, Anal. Chem. Res., 10 (2016) 18-27.

H. Shirkhanloo, M. Ghazaghi, H. ZavvarMousavi, Cadmium determination in human biological samples based on trioctylmethyl ammonium thiosalicylate as a task-specific ionic liquid by dispersive liquid–liquid microextraction method, J. Molec. Liqu., 218 (2016) 478–483.

H. Z. Mousavi, H. Shirkhanloo, M. Ghazaghi, Chromium speciation in human blood samples based on acetylcysteine by dispersive liquid–liquid biomicroextraction and in-vitro evaluation of acetyl cysteine/cysteine for decreasing of hexavalent chromium concentration, J. Pharmac. Biomed. Anal., 118 (2016) 1–8.

E. C. Lourenço, E. Eyng, P. R. S. Bittencourt, Fabio A. Duarte, Rochele S. Picoloto, É. L. M. Flores, A simple, rapid and low cost reversed-phase dispersive liquid-liquid microextraction for the determination of Na, K, Ca and Mg in biodiesel, Talanta, 199 (2019) 1-7.

L. B. Escudero, P. Berton, E. M. Martinis, R. A. Olsina, R. G. Wuilloud, Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase, Talanta, 88 (2012) 277–283.

X. Jia, Y. Han, C. Wei, T. Duan, H. Chen, Speciation of mercury in liquid cosmetic samples by ionic liquid based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography inductively coupled plasma mass spectrometry, J. Anal. Atom. Spectrom., 26 (2011) 1380–1386.

L. B. Escudero, E. M. Martinis, R. A. Olsina, R. G. Wuilloud, Arsenic speciation analysis in monovarietal wines by on-line ionic liquid-based dispersive liquid-liquid microextraction, Food Chem., 138 (2013) 484–490.

J. F. Ayala-Cabrera, M. J. Trujillo-Rodríguez, V. Pino, Ó. M. Hernández-Torres, A. M. Afonso, J. Sirieix-Plénet, Ionic liquids versus ionic liquid-based surfactants in dispersive liquid–liquid microextraction for determining copper in water by flame atomic absorption spectrometry, Inter. J. Environ. Anal. Chem., 96 (2016) 101–118.

E. Molaakbari, A. Mostafavi, D. Afzali, Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination, J. Hazard. Mater., 185 (2011) 647–652.

P. Berton, E.M. Martinis, L.D. Martinez, R.G. Wuilloud, Room temperature ionic liquid-based microextraction for vanadium species separation and determination in water samples by electrothermal atomic absorption spectrometry, Anal. Chim. Acta., 640 (2009) 40–46.

M. Tuzen, O. Z. Pekiner, Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages, Food Chem., 188 (2015) 619–624.

A. Beiraghi, M. Shokri, S. Seidi, B. M. Godajdar, Magnetomotive room temperature dicationic ionic liquid: A new concept toward centrifuge-less dispersive liquid– liquid microextraction, J. Chromatogr. A, 76 (2015) 1–8.

V. Balarama, K. Mullapudi, K. Chandrasekaran, G. Venkateswarlu, D. Karunasagar, Development of a simple and rapid microwave-assisted extraction method using very dilute solutions of perchloric acid and hydrogen peroxide for the multi-elemental analysis of food materials by ICP-OES: A green analytical method, Microchem. J., 146 (2019) 807-817.

E. J. Santos, S. Clarice, D. B. Amaral, N. Nagata, M. T. Grassi, Cloud point extractors for simultaneous determination of Pd and Pt in water samples by ICP OES with multivariate optimization, Microchem. J., 152 (2020) 104300-104309.

S. A. Arain, T. G. Kazi, H. I. Afridi, M. Shahzadi Arain, A. H. Panhwar, N. Khan, J. A. Baig, F. Shah, A new dispersive liquid–liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples, Ecotoxicol. Environ. Safety, 126 (2016) 186–192.

H. Shirkhanloo, M. Falahnejad, H. Zavvar Mousavi, On-line ultrasound-assisted dispersive micro-solid-phase extraction based on amino bimodal mesoporous silica nanoparticles for the preconcentration and determination of cadmium in human biological samples, Microchem. J., 124 (2016) 637-645.

M. Ghazaghi, H. Zavvar Mousavi, A. M. Rashidi, H. Shirkhanloo, R. Rahighi, Graphene-silica hybrid inefficient preconcentration of heavy metal ions via novel single-step method of moderate centrifugation-assisted dispersive micro solid phase extraction, Talanta, 150 (2016) 476–484.

M. Falahnejad, H. Zavvar Mousavi, H. Shirkhanloo, A.M. Rashidi, Preconcentration and separation of ultra-trace amounts of lead using ultrasound-assisted cloud point-micro solid phase extraction based on amine functionalized silica aerogel nano-adsorbent, 125 (2016) 236–241.

H. Shirkhanloo, M. Ghazaghi, A. Rashidi, A. Vahid, Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction, Microchem. J., 130 (2017) 137–146.

H. Shirkhanloo, A. Khaligh, H. Zavvar Mousavi, A. Rashidi, Ultrasound assisted-dispersive-ionic liquid-micro-solid phase extraction based on carboxyl-functionalized nanoporous graphene for speciation and determination of trace inorganic and organic mercury species in water and caprine blood samples, Microchem. J., 130 (2017) 245–254.

H. Shirkhanloo, A. Khaligh, H. Zavvar Mousavi, A. Rashidi, Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples, Microchem. Journal 124 (2016) 637–645.

F. Hosseini, H. Shirkhanloo, N. Motakef Kazemi, Nano analysis in biochemistry: in vitro separation and determination of aluminum in blood of dialysis patients based on graphene oxide nanoparticles dispersed to ionic liquid, J. Nanoanal., 4 (2017) 99-109.

S. Golkhah, H. Zavvar Mousavi, H. Shirkhanloo, A. Khaligh, Removal of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles, Int. J. Nanosci. Nanotechnol., 13 (2017) 105-117.

Z. Ying, L. Chun-yan, Y. Jin-gang, J. Xin-yu, Adsorption properties of a novel 3D graphene/MgO composite for heavy metal ions, J. Cent. South Univ., 26 (2019) 813−823.

H. Shirkhanlooa, A. Khaligh, H. Zavvar Mousavi, Al. Rashidi, Graphene oxide-packed micro-column solid-phase extraction combined with flame atomic absorption spectrometry for determination of lead (II) and nickel (II) in water samples, Int. J. Environ. Anal. Chem., 95 (2014) 1-17.

R. Sitko, P. Janik, B. Feist, E. Talik, A. Gagor, Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry, ACS Appl. Mater. Iinterfaces, 6 (2014) 20144-20153.

A. Khaligh, H. Zavvar Mousavi, H. Shirkhanloo, A. Rashidi, Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry, RSC Adv., 5 (2015) 93347–93359.

M. Ghazaghi, H. Zavvar Mousavia, A. Rashidi, H. Shirkhanloo, R. Rahighi, Innovative separation and preconcentration technique of coagulating homogenous dispersive microsolid phase extraction exploiting graphene oxide nanosheets, Anal. Chim. Acta, 902 (2016) 33–42.

B. Yang, Q. Gong, L. Zhao, H. Sun, N. Ren, J. Qin, J. Xu, H. Yang, Preconcentration and determination of lead and cadmium in water samples with MnO2 coated carbon nanotubes by using ET-AAS, Desalination, 278 (2011) 65.

Z. Bahadir, V. Bulut, M. Hidalgo, M. Soylak, E. Marguí, Determination of trace amounts of hexavalent chromium in drinking waters by dispersive micro-solid phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry, Spectrochim. Acta Part B, 107 (2015) 170–177.

C. Cui, H. Peng, Y. Zhang, K. Nan, M. He, B. Chen, B. Hu, Ti-containing meso- porous silica packed micro-column separation/preconcentration combined with inductively coupled plasma-mass spectrometry for the determination of trace Cr, Cu, Cd and Pb, in environmental samples, J. Anal. At. Spectrom., 30 (2015) 1386–1394.

A.H. Panhwar, T.G. Kazi, H.I. Afridi, S.A. Arain, K.D. Brahman, M.S. Arain, A new solid phase microextraction method using organic ligand in micro-pipette tip syringe system packed with modified carbon cloth for preconcentration of cadmium in drinking water and blood samples of kidney failure patients, Spec-trochim. Acta Part A, 138 (2015) 296–302.

T. Da¸ S. Saçmacı, A. Ülgen, S. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry, Food Chem., 174 (2015) 591–596.

M. Babazadeh, R. Hosseinzadeh-Khanmiri, J. Abolhasani, E. Ghorbani-Kalhor, A. Hassanpour, Solid phase extraction of heavy metal ions from agricultureal samples with the aid of a novel functionalized magneticmetal–organicframe-work, RSC Adv., 5 (2015) 19884–19892.

O.M. Kalfa, Ö. Yalçınkaya, A.R. Türker, Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application top reconcentration and separation of cadmium, J. Hazard. Mater., 166 (2009) 455–461.

R. Sitko, P. Janik, B. Feist, E. Talik, A. Gagor, Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry, ACS Appl. Mater., 6 (2014) 20144–20153.

M.C. Sneed, R.C. Brasted, C.V. King, Comprehensive inorganic chemistry, J. Electrochem. Soc., 103 (1956) 83.

K.P. Lisha, T. Pradeep, Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles, Gold Bull., 42 (2009) 144–152.

I. Ojea-Jiménez, X. López, J. Arbiol, V. Puntes, Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters, ACS Nano, 6 (2012) 2253.

M.P. Watts, V.S. Coker, S.A. Parry, R.A.D. Pattrick, R.A.P. Thomas, R. Kalin, J.R. Lloyd, Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue, Appl. Geochem., 54 (2015) 27–42.

C. Shan, Z. Ma, M. Tong, J. Ni, Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4 @SiO2 magnetic nanoparticles, Water Res., 69 (2015) 252–260.

M.E. Mahmoud, M.S. Abdelwahab, A.E.H. Abdou, Enhanced removal of lead and cadmium from water by Fe3O4-cross linked-O-phenylenediamine nano-composite, Sep. Sci. Technol., 51 (2016) 237–247.

L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization, Adsorp., 19 (2013) 465–474.

Y.Q. Tan, M. Chen, Y.M. Hao, High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nano-particles, Chem. Eng. J., 191 (2012) 104–111.

J. Shi, H.Y. Li, H.G. Lu, Zhao, X.W. Use of Carboxyl Functional Magnetite Nanoparticles as Potential Sorbents for the Removal of Heavy Metal Ions from Aqueous Solution. J. Chem. Eng. Data 2015, 60, 2035–2041.

S.D. Pan, H.Y. Shen, Q.H. Xu, J. Luo, M.Q. Hu, Surface mercapto engineered magnetic Fe3O4 nano-adsorbent for the removal of mercury from aqueous solutions, J. Colloid Interface Sci., 365 (2012) 204–212.

S. Christian, E. Robin, Z. Robert, F. Artur, K. Hauke, W. Christopher, O. Johannes, M. Jan-Philip, S. Theo, N. Kornelius, Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: Controlling the collective magnetic properties, Langmuir ACS J. Surf. Colloids, 30 (2014) 11190–11196.

J. Yang, B. Hou, J. Wang, X. Huang, Nanomaterials for the Removal of Heavy Metals from Wastewater, Nanomaterials, 9 (2019) 424.

O’Carroll D., Sleep B., Krol M., Boparai H., Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour., 51 (2013) 104–122.

T. Liu, Z.L. Wang, Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater, Chem. Eng. J., 263 (2015) 55–61.

Z. Zhen, H.Z. Wei, L.W. Li, X.X. Hua, Synchronous Treatment of Heavy Metal Ions and Nitrate by Zero-valent Iron, Huan Jing Ke Xue, 30 (2009) 775–779.

S.M. Seyedi, H. Rabiee, S.M.S. Shahabadi, S.M. Borghei, Synthesis of Zero-valent Iron Nanoparticles via Electrical Wire Explosion for Efficient Removal of Heavy Metals: Water, Clean—Soil Air Water, 45 (2016) 1600139.

W. Wei, Y. Hua, S. Li, W. Yan, W.X. Zhang, Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): A comparative study, Chem. Eng. J., 304 (2016) 79–88.

S. Tighadouini, S. Radi, M. Bacquet, S. Degoutin, M. Zaghrioui, S. Jodeh, I Warad, Removal efficiency of Pb (II), Zn (II), Cd (II) and Cu (II) from aqueous solution and natural water by ketoenol–pyrazole receptor functionalized silica hybrid adsorbent, Sep. Sci. Technol., 52 (2017) 608–621.

S. Radi, S. Tighadouini, M. Bacquet, S. Degoutin, Y. Garcia, New hybrid material based on a silica-immobilised conjugated β-ketoenol-bipyridine receptor and its excellent Cu (II) adsorption capacity, Anal. Method., 8 (2016) 6923–6931.

S. Radi, S. Tighadouini, M. Bacquet, S. Degoutin, J-P Dacquin, D. Eddike, M. Tillard, Y. Mabkhot, β-Keto-enol tethered pyridine and thiophene: synthesis, crystal structure determination and its organic immobilization on silica for efficient solid-liquid extraction of heavy metals, Molecul., 21(2016) 888–900. doi: 10.3390/molecules21070888.

S. Radi, S. Tighadouini, M. Bacquet, S. Degoutin, B. Revel, M. Zaghrioui, Quantitative removal of Zn(II) from aqueous solution and natural water using new silica-immobilized ketoenol–pyridine receptor, J. Environ. Chem. Eng., 3 (2015)1769–1778.

Published
2019-09-30
How to Cite
Arjomandi, M., & Shirkhanloo, *Hamid. (2019). A review: Analytical methods for heavy metals determination in environment and human samples. Analytical Methods in Environmental Chemistry Journal, 2(03), 97-126. https://doi.org/10.24200/amecj.v2.i03.73
Section
Review Article